10 research outputs found

    smart Emergency Response System (smartERS) – the Oil Spill use case

    Get PDF
    Thanks to the huge progress within the last 50 years in Earth Observation, Geospatial science and ICT technology, mankind is facing, for the first time, the opportunity to effectively respond to natural and artificial emergencies such as: earthquake, flood, oil spill, etc. Responding to an emergency requires to find, access, exchange, and of course understand many types of geospatial information provided by several types of sensors. Majors oil spills emergencies as, the Gulf of Mexico (Macondo/Deepwater Horizon) in 2010, the sinking of the oil tanker Prestige in 2002, have offered lessons learned and identified challenges to be addressed. Interoperability provides the principles and technologies to address those challenges. Since years interoperability has been developing based on traditional Service Oriented Architecture, request/response communication style, and implemented through Spatial Data Infrastructures. The experience handling oil spill responses shows that emergency services based on SDIs have some limitations, mainly due to their real-time peculiarity. Moreover despite the effort that Private Sector and Public Administration have been putting since years, the goal to provide an exhaustive picture of the situation during an Emergency Response is still far to be reached. We argue that to achieve this goal, we have to frame the problem in a different way. Emergency Response is not just sensing; it should be smart enough to encompass intelligent actions such as, automatically and dynamically acquire context driven information. The gaol of this paper is to define what a “smart Emergency Response System” (smartERS) should be.JRC.G.3-Maritime affair

    Semantics-Aware Indexing of Geospatial Resources Based on Multilingual Thesauri: Methodology and Preliminary Results

    Get PDF
    the discovery functionality implemented by geoportals is primarily based on the syntactic matching of users’ search pattern against descriptive metadata, such as title, abstract, or keywords. As a consequence, the retrieval process is often hampered by linguistic issues related to multilingualism, semantic heterogeneity (synonymy, homonymy, etc.), and terminology mismatch in general. We propose a novel criterion for associating resources to language-neutral identifiers, thus enabling multilingual access to datasets and services as well as query expansion and refinement. The methodology has been successfully applied to the ISO-compliant metadata records aggregated by the INSPIRE Geoportal and is driving semantics-aware extensions of the discovery functionalities of the latter

    Citizens as Sensors for Crisis Event: Sensor Web Enablement for Volunteered Geographic Information

    Get PDF
    A set of developments within the field of geosensors is to engage citizens to act as sensors, thus providing so-called Volunteered Geographic Information (VGI). There is a long tradition of non specialists contributing to the collection of geo-referenced information. Furthermore thanks to recent convergence of greater access to broadband connections, the availability of Global Positioning Systems at affordable prices, and more participative forms of interaction on the Web (Web 2.0) vast numbers of individuals are able to create and share geographic information. The potential of up to 6 billion human sensors to monitor the state of the environment, validate global models with local knowledge, contribute to crisis situations awareness and provide information that only humans can capture (e.g. emotions and perceptions like fear of crime) is vast and has yet to be fully exploited. However, integrating VGI into Spatial Data Infrastructures (SDI) is a major challenge, as it is often regarded as insufficiently structured, documented or validated according to scientific standards. Early instances of SDIs used to have limited ability to manage and process geosensor-based data (beyond remotely sensed imagery snapshots), which tend to arrive in continuous streams of real-time information. The current works on standards for Sensor Web Enablement (SWE) aim to fill this gap. This paper shows how such SWE standards can be applied to VGI, thus converting it in a timely, cost-effective and valuable source of information for SDIs. By doing so, we extend previous works describing a workflow for VGI integration into SDI and further advance an initial set of VGI Sensing and event detection techniques. In particular, an example of how such VGI Sensing techniques can support crisis information system is provided.JRC.DDG.H.6-Spatial data infrastructure

    Citizen-based sensing of crisis events: sensor web enablement for volunteered geographic information

    Get PDF
    Thanks to recent convergence of greater access to broadband connections, the availability of Global Positioning Systems in small packages at affordable prices and more participative forms of interaction on the Web (Web 2.0), vast numbers of individuals became able to create and share Volunteered Geographic Information (VGI). The potential of up to six billion persons to monitor the state of the environment, validate global models with local knowledge, contribute to crisis situations awareness, and provide information that only humans can capture is vast and has yet to be fully exploited. Integrating VGI into Spatial Data Infrastructures (SDI) is a major challenge, as it is often regarded as insufficiently structured, documented, or validated according to scientific standards. Early instances of SDIs used to have limited ability to manage and process geosensor-based data (beyond remotely sensed imagery), which tend to arrive in continuous streams of real-time information. The current works on standards for Sensor Web Enablement fill this gap. This paper shows how such standards can be applied to VGI, thus converting it in a timely, cost-effective and valuable source of information for SDIs. By doing so, we extend previous efforts describing a workflow for VGI integration into SDI and further advance an initial set of VGI Sensing and event detection techniques. Examples of how such VGI Sensing techniques can support crisis information system are provided. The presented approach serves central building blocks for a Digital Earth’s nervous system, which is required to develop the next generation of (geospatial) information infrastructures

    "OMG, from Here, I Can See the Flames!": A Use case of Mining Location Based Social Networks to Acquire Spatiotemporal Data on Forest Fires

    No full text
    The emergence of innovative web applications, often labelled as Web 2.0, has permitted an unprecedented increase of content created by non-specialist users. In particular, Location-based Social Networks (LBSN) are designed as platforms allowing the creation, storage and retrieval of vast amounts of georeferenced and user-generated contents. LBSN can thus be seen by Geographic Information specialists as a timely and cost-effective source of spatio-temporal information for many fields of application, provided that they can set up workflows to retrieve, validate and organise such information. This paper aims to improve the understanding on how LBSN can be used as a reliable source of spatio-temporal information, by analysing the temporal, spatial and social dynamics of Twitter activity during a major forest fire event in the South of France in July 2009.JRC.H.6-Spatial data infrastructure

    The INSPIRE Community Geoportal

    No full text
    The INSPIRE Community Geoportal is a web site that provides access to a collection of geographic data and services within the framework of the infrastructure for Spatial Information in Europe (INSPIRE) Directive. The presentation will provide details on the latest development and status of the INSPIRE geoportal and in particular what concerns the availability of metadata and links to INSPIRE discovery and view servicesJRC.DDG.H.6-Spatial data infrastructure

    Citizen-based sensing of crisis events: sensor web enablement for volunteered geographic information

    No full text
    Thanks to recent convergence of greater access to broadband connections, the availability of Global Positioning Systems in small packages at affordable prices and more participative forms of interaction on the Web (Web 2.0), vast numbers of individuals became able to create and share Volunteered Geographic Information (VGI). The potential of up to six billion persons to monitor the state of the environment, validate global models with local knowledge, contribute to crisis situations awareness, and provide information that only humans can capture is vast and has yet to be fully exploited. Integrating VGI into Spatial Data Infrastructures (SDI) is a major challenge, as it is often regarded as insufficiently structured, documented, or validated according to scientific standards. Early instances of SDIs used to have limited ability to manage and process geosensor-based data (beyond remotely sensed imagery), which tend to arrive in continuous streams of real-time information. The current works on standards for Sensor Web Enablement fill this gap. This paper shows how such standards can be applied to VGI, thus converting it in a timely, cost-effective and valuable source of information for SDIs. By doing so, we extend previous efforts describing a workflow for VGI integration into SDI and further advance an initial set of VGI Sensing and event detection techniques. Examples of how such VGI Sensing techniques can support crisis information system are provided. The presented approach serves central building blocks for a Digital Earth’s nervous system, which is required to develop the next generation of (geospatial) information infrastructures.JRC.H.6-Digital Earth and Reference Dat

    Citizen-based sensing of crisis events: Sensor web enablement for volunteered geographic information

    No full text
    Thanks to recent convergence of greater access to broadband connections, the availability of Global Positioning Systems in small packages at affordable prices and more participative forms of interaction on the Web (Web 2.0), vast numbers of individuals became able to create and share Volunteered Geographic Information (VGI). The potential of up to six billion persons to monitor the state of the environment, validate global models with local knowledge, contribute to crisis situations awareness, and provide information that only humans can capture is vast and has yet to be fully exploited. Integrating VGI into Spatial Data Infrastructures (SDI) is a major challenge, as it is often regarded as insufficiently structured, documented, or validated according to scientific standards. Early instances of SDIs used to have limited ability to manage and process geosensor-based data (beyond remotely sensed imagery), which tend to arrive in continuous streams of real-time information. The current works on standards for Sensor Web Enablement fill this gap. This paper shows how such standards can be applied to VGI, thus converting it in a timely, cost-effective and valuable source of information for SDIs. By doing so, we extend previous efforts describing a workflow for VGI integration into SDI and further advance an initial set of VGI Sensing and event detection techniques. Examples of how such VGI Sensing techniques can support crisis information system are provided. The presented approach serves central building blocks for a Digital Earth's nervous system, which is required to develop the next generation of (geospatial) information infrastructures. © 2011 Società Italiana di Fotogrammetria e Topografia (SIFET)

    Global attitudes in the management of acute appendicitis during COVID-19 pandemic: ACIE Appy Study

    No full text
    Background: Surgical strategies are being adapted to face the COVID-19 pandemic. Recommendations on the management of acute appendicitis have been based on expert opinion, but very little evidence is available. This study addressed that dearth with a snapshot of worldwide approaches to appendicitis. Methods: The Association of Italian Surgeons in Europe designed an online survey to assess the current attitude of surgeons globally regarding the management of patients with acute appendicitis during the pandemic. Questions were divided into baseline information, hospital organization and screening, personal protective equipment, management and surgical approach, and patient presentation before versus during the pandemic. Results: Of 744 answers, 709 (from 66 countries) were complete and were included in the analysis. Most hospitals were treating both patients with and those without COVID. There was variation in screening indications and modality used, with chest X-ray plus molecular testing (PCR) being the commonest (19\ub78 per cent). Conservative management of complicated and uncomplicated appendicitis was used by 6\ub76 and 2\ub74 per cent respectively before, but 23\ub77 and 5\ub73 per cent, during the pandemic (both P < 0\ub7001). One-third changed their approach from laparoscopic to open surgery owing to the popular (but evidence-lacking) advice from expert groups during the initial phase of the pandemic. No agreement on how to filter surgical smoke plume during laparoscopy was identified. There was an overall reduction in the number of patients admitted with appendicitis and one-third felt that patients who did present had more severe appendicitis than they usually observe. Conclusion: Conservative management of mild appendicitis has been possible during the pandemic. The fact that some surgeons switched to open appendicectomy may reflect the poor guidelines that emanated in the early phase of SARS-CoV-2
    corecore